
IBM Compilers for IBM Compilers for
pSeriespSeries

October 10, 2001
Bob Blainey

blainey@ca.ibm.com

Agenda

Review of the pSeries compiler products
Compiler Configuration Options
Compiler roadmap
Some Performance Results
A short tutorial on performance controls
A peek inside the compiler
Q&A

IBM Compiler Products for pSeries

Latest versions
C for AIX, Version 5.0.2.0
VisualAge C++ Professional for AIX, Version
5.0.2.0
XL Fortran for AIX, Version 7.1.0.2

Older, supported versions
XL High Performance Fortran for AIX, Version 1.4
(until 12/01)
VisualAge C++ Professional for AIX, Version 4.0
(until 12/02)

XL Fortran version 7.1
Fortran 77/90/95 compiler with many extensions
32 and 64 bit support for serial and SMP
OpenMP 1.0 support (OpenMP 2.0 coming ...)
Support for TotalView, xldb, IBM distributed
debugger and dbx/pdbx
Snapshot directive for debugging optimized code
Portfolio of optimizing transformations

Comprehensive path length reduction
Whole program analysis
Loop optimization for parallelism, locality and
instruction scheduling
Tuned support for all RS/6000 and pSeries
processors

More info: www.software.ibm.com/ad/fortran

C for AIX version 5.0
ANSI C89 compliant compiler (C99 coming soon)
32 and 64 bit support for serial and SMP
Full support for OpenMP 1.0 (participating in
OpenMP 2.0 definition)
Support for TotalView, xldb, IBM distributed
debugger and dbx/pdbx
Snapshot directive for debugging optimized code
Runtime memory debug support
Portfolio of optimizing transformations

Similar to Fortran support but includes tuned
optimizations for C pointers and systems coding
styles

More info: www.software.ibm.com/ad/caix

VisualAge for C++ for AIX version 5.0

Fully compliant ANSI98 C++ compiler
32 and 64 bit support
Batch compiler for traditional build environments and
maximal optimization
Incremental compiler for rapid application development (to be
phased out in next release)
Integrated graphical development environment including
remote debug and performance visualization
Support for TotalView, xldb, IBM distributed debugger and
dbx/pdbx
Portfolio of optimizing transformations

Subset of transformations available in Fortran and C but
has tuned support for all processors
Much more coming soon

More info: www.software.ibm.com/ad/vacpp

Inside a Compilation Step

C++ Front
End

(xlCentry)

Optimizer
(ipa)

C Front End
(xlcentry)

Code Generator
(xlCcode/xlfcode)

C source (foo.c) C++ source
(foo.C)

Fortran
Front End
(xlfentry)

Object Code (foo.o)

Scalarizer
(xlfhot)

Fortran source (foo.f)

All information subject to change without notice

Shortcut path
for optimize < 4

Compiler Configuration Options
Configuration file (/etc/xlf.cfg, /etc/vac.cfg)

Specifies default options and component and library paths for
various compiler invocations
A compiler invocation (eg. xlf, xlf95, xlf_r) is simply a symbolic link
to the compiler driver program (ie. argv[0]) used to obtain a specific
behaviour - each has an associated stanza in the configuration file
You can specify your own configuration file using -F and you can
create new stanzas ... take care if changing existing ones

-qpath option (old form uses -B and -t)
Can be used to direct the compiler to use a component (eg.
xlcentry, xlfcode) from a specific path

mixing components from different releases/PTFs works in
general but is not warranted
recommend using a consistent set of components

Specifying a component other than the default one may require the
use of a compatible runtime (ie. through the use of -L or LIBPATH)
and a compatible message system (ie. through the use of
NLSPATH)

TMPDIR
Specifies an alternate directory for compiler temporary file storage -
may be useful when using the -qipa option (including -O4, -O5)

Configuration Options: Multiple
Concurrent Compiler Versions

XL Fortran manual documents a procedure for installing a
compiler release in an alternate location
A similar technique can be used for C/C++
A technique based on alternate configuration files can be
used to create a mirror image of an installed compiler in a
specified location.
We understand that these procedures are poorly
documented and difficult to understand and manage
We will better document and support these types of
concurrent installations in XL Fortran V8 and VAC/C++ V6
with these caveats:

PMRs would be accepted only for compilers installed
through smit/installp
PTFs or efixes would not apply to compilers installed in
alternate locations

XL Fortran Roadmap
XL Fortran 7.1.1 - GA 12/01

Power 4 optimization
Improved F90 intrinsic performance (MATMUL,
TRANSPOSE)
Improved SMP performance (Auto and OpenMP)
Improved compile performance

XL Fortran 8.1 - projected GA 2Q02
OpenMP 2.0
Fortran 200x subset

IEEE intrinsic module
allocatable components

Even more Power 4 optimization
Whole program analysis for locality and auto SMP
parallelism (-qipa + -qhot or -qsmp=auto)

All information subject to change without notice

F90 Intrinsic Improvements

Two different improvements to performance of dense
floating point MATMUL invocations
Recognize all transpose variants of *GEMM and
*GEMV and call out to optimized versions
Without special options (V711 requires -qhot, -qsmp
or -qipa), call outs are generated to compiler internal
tuned BLAS
With -qessl option, call outs are generated to high
performance ESSL implementations
Future work planned to focus on transformational
intrinsics such as RESHAPE, MERGE, PACK

All information subject to change without notice

OpenMP 2.0

Explicit parallelization of array language
constructs (assignment, FORALL,
WHERE) through the WORKSHARE
directive
Thread-private and copyin for variables
Array reductions
Portable wall-clock timer
NUM_THREADS clause on parallel region

C for AIX Roadmap
C for AIX 6.0 beta - GA 12/01

Power 4 optimization
Improved SMP performance (Auto and OpenMP)
Optimization of loops for locality (-qhot)

C for AIX 6.0 - projected GA 2Q02
ANSI C99 support, notably:

_Bool and _Complex type specifiers
signed and unsigned long long
restricted pointers
inline functions
variable size automatic arrays

Many GNU C compatible language and preprocessor
extensions
Even more Power 4 optimization
Whole program analysis for locality and auto SMP
parallelism (-qipa + -qhot or -qsmp=auto)

All information subject to change without notice

VisualAge for C++ for AIX Roadmap
VisualAge for C++ for AIX 6.0 beta - GA 12/01

Power 4 optimization
Template code size optimizations
Optimization of virtual function calls
Improved optimization in the presence of exception handling
Whole program analysis (-qipa)
Optimization of loops for locality and auto SMP parallelism
(-qhot, -qsmp=auto)

VisualAge for C++ for AIX 6.0 - projected GA 2Q02
OpenMP 1.0 support (participating in OpenMP 2.0 definition)
Many GNU C/C++ compatible language and preprocessor
extensions
Snapshot directive for debugging optimized code
Even more Power 4 optimization
Whole program analysis for locality and auto SMP parallelism
(-qipa + -qhot or -qsmp=auto)

All information subject to change without notice

Common Optimization Technology
Roadmap (Power 4 specific)

Architecture-neutral and -specific code paths
tuning for arch=ppc and arch=pwr4

Precise machine model for scheduling (-O2+)
new instruction scheduler with more detailed modelling
capability
tuned through extensive experimention on early h/w

New loop transformations for deep pipelines (-O3+)
more precise loop unrolling and pipelining

New aggressive branch optimizations (-O2+)
branch pattern replacement
utilization of branch hints (eg. using profile feedback)

Optimized usage of hardware-expanded instructions
eg. load/store update, mtcr, lm/stm

Optimized prefetch buffer allocation (-qhot)
utilization of prefetch stream start instructions
loop nest fusion and partitioning to optimize # streams

All information subject to change without notice

Common Optimization Technology
Roadmap

Enhanced profile-directed optimization (-qpdf)
Profile-directed inlining, specialization, code motion, loop
optimization
Much faster instrumentation (-qpdf1) time (20-40% penalty
vs. 2-5x)

Interprocedural optimization (-qipa)
Improved link time and reduced memory requirements
Better handling of multiple levels of pointer indirection
Better handling of function pointer calls, virtual calls, C++
exceptions, templates
Much expanded database of known library behaviours (eg.
pthreads, MPI, ESSL, MASS)

All information subject to change without notice

Common Optimization Technology
Roadmap (continued)

Loop optimization (-qhot, -qsmp=auto)
Improved compile time
More precise data dependence analysis leading to new
opportunities for nest fusion, partitioning, interchange,
parallelization, vectorization, etc
More aggressive transformations including improved
handling of triangular and imperfect nests, indirect array
indexing and branching within loops

Whole program optimization for locality and auto
SMP parallelism (-qipa + -qhot or -qsmp=auto)

Better handling of loop nests with calls
Inlining and cloning tuned to loop optimization (eg. fusion)
Improved handling of partial array read/write (eg. column),
even through reference parameters

Leads to coarser grain (ie. more profitable) automatic
parallelism

All information subject to change without notice

SPEC results for Power4

SPECint base

SPECint

SPECfp base

SPECfp

0 200 400 600 800 1000 1200 1400

SPEC Ratio

Pentium 4 2.0 GHz
Alpha 1.0 GHz
Sparc 3 900 MHz
R14000 500 MHz
Itanium 800 MHz
PA8700 750 MHz
Power 4 1.3 GHz

Competitive data from www.spec.org

783

808

1098

1169

daxpy
ddot

dabs
dfft

di4l07
di4l08

di4l09

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ite
ra

tio
ns

 p
er

 c
yc

le

V7.1.0 (tune pwr3)
V7.1.1 (tune pwr4)

Selected Kernel Performance

NAS OpenMP Speedup (16w NH-2)

1 (uni) 1 2 4 8 12 16

threads

0

5

10

15

20

Sp
ee

du
p

bt.A

cg.A

ep.A

ft.A

is.A

lu.A

mg.A

sp.A

EPCC SyncBench Results - 16w NH-2

Number of Threads

0

10

20

30

40

50

60

70

80

Th
ou

sa
nd

s

C
P

U
 C

yc
le

s
Par Region

Workshare DO

Par DO

Barrier

Single

Critical

Lock

Ordered

Atomic

Reduction

EPCC SchedBench Results - 16w NH-2

1 2 4 8 16 32
Chunk Size

0

100

200

300

400

Th
ou

sa
nd

s

C
P

U
 C

yc
le

s Static

Dynamic

Guided

Tutorial: Code Performance Controls

Compiler optimization
-O, -qhot, -qipa
-qcompact, -qinline, -qunroll, -qpdf

Target machine specification
-qarch, -qtune, -qcache, -qsmp, -q64/32

Program behaviour
-qstrict, -qalias, -qassert, -qintsize
-qdatalocal/proclocal, -qlibansi, -ma, -qroconst
-qfloat, -qflttrap

Diagnostic options
-qlist, -qreport, -qinitauto

Optimization Options

OPTIMIZE: specified as -qoptimize=n or -On where n is
one of:

0: Fast compilation, full support for debugging
2: Comprehensive low-level optimization, partial support
for debugging (procedure boundaries)
3: Even more optimization - compile time/space intensive
and/or marginal effectiveness
4: Macro option including -O3, -qhot, -qipa, -qarch=auto,
-qtune=auto, -qcache=auto
5: Macro option including -O4, -qipa=level=2

Optimization Options (continued)

HOT (High Order Transformations) - Fortran (C and C++
coming soon)

Specified as -qhot[=[no]vector | arraypad[=n]]
Optimized handling of F90 array language constructs
(elimination of temporaries, fusion of statements)
High level transformation (eg. interchange) of loop nests
to improve memory locality (reduce cache/TLB misses),
optimize usage of hardware prefetch and balance loop
computation (typically ld/st vs. float)
Optionally transforms loops to exploit vector intrinsic
library (eg. reciprocal, sqrt, trig) - may result in slightly
different rounding
Optionally introduces array padding under user control -
potentially unsafe if not applied uniformly

Optimization Options (continued)

IPA (Inter-Procedural Analysis) - Fortran and C (C++
coming soon)

Specified as -qipa[=level=n | inline= | fine tuning] on both
compile and link steps
Expand the scope of optimization to an entire program
unit (executable or shared object)
level=0: Program partitioning and simple interprocedural
optimization
level=1: Inlining and global data mapping
level=2: Global alias analysis, specialization,
interprocedural data flow
inline=: Precise user control of inlining
fine tuning: Specify library code behaviour, tune program
partitioning, read commands from a file

Target Machine Options

ARCH
Restricts the compiler to generate a subset of the Power
or PowerPC instruction set
Specified as -qarch=isa where isa is one of:

com (default): Code can run on any RS/6000 - implies
-qtune=pwr2
auto: Code may take advantage of instructions
available only on the compiling machine (or similar
machines)
ppc: Code follows PowerPC architecture - implies
-qtune=604 (32 bit) or -qtune=pwr3 (64 bit)
pwr3: Code can run on any Power 3 - implies
-qtune=pwr3
Lots of others: pwr, pwr2, 604, ...

Target Machine Options (continued)

TUNE: Bias optimization toward execution on a given
machine

Does not imply anything about the ability to run correctly
on a given machine - only affects performance
Specified as -qtune=machine where machine is one of
auto, 604, pwr2, p2sc, pwr3, rs64a, etc.

CACHE: Defines a specific cache/memory geometry
Defaults are set through TUNE
Specified as -qcache=level=n:cache_spec, where
cache_spec includes:

type=i|d|c: cache type (instruction/data/combined)
line=lsz:size=sz:assoc=as: line/cache size and set
associativity
cost=c: cost (in cpu cycles) of a miss

Target Machine Options (continued)

64/32: Generate code for 64 bit (4/8/8) or 32 bit (4/4/4)
addressing model

Specified as -q32 or -q64
SMP (Fortran, C): Generate threaded code for a
shared-memory parallel machine

Specified as -qsmp[=[no]auto:=[no]omp:fine tuning]
auto instructs the compiler to automatically generate
parallel code where possible without user assistance
omp instructs the compiler to observe OpenMP 1.0
language extensions for specifying explicit parallelism
fine tuning includes control over thread scheduling,
nested parallelism and locking

Program Behaviour Options

STRICT
Specified as -q[no]strict, default is -qstrict with -qoptimize=0
and -qoptimize=2, -qnostrict with -qoptimize=3,4,5
nostrict allows the compiler to reorder floating point
calculations and potentially excepting instructions

ALIAS (Fortran)
Specified as -qalias=[no]std:[no]aryovrlp:others
Allows the compiler to assume that certain variables do not
refer to overlapping storage
std (default) refers to the rule about storage association of
reference parameters with each other and globals
aryovrlp (default) defines whether there are any assignments
between storage-associated arrays - try -qalias=noaryovrlp
for better performance

Program Behaviour Options
(continued)

ALIAS (C, C++)
Similar to Fortran option of the same name but focussed
on overlap of storage accessed using pointers
Specified as -qalias=subopt where subopt is one of:

[no]ansi: Enable ANSI standard type-based alias rules
[no]typeptr: Assume pointers to different types never
point to the same or overlapping storage
[no]allptrs: Assume that different pointer variables
always point to non-overlapping storage
[no]addrtaken: Assume that external variables do not
have their address taken outside the source file being
compiled

Directives and Pragmas

OpenMP 1.0 - supported in C and Fortran
Legacy SMP directives and pragmas

Most of these are superceded by OpenMP - use OpenMP where
possible

Assertive directives (Fortran)
ASSERT, INDEPENDENT, CNCALL, PERMUTATION

Assertive pragmas (C)
isolated_call, disjoint, independent_loop, independent_calls,
iterations, permutation, execution_frequency, leaves

Embedded Options
#pragma options and #pragma option_override in C
@PROCESS in Fortran

Prescriptive directives (Fortran)
PREFETCH, UNROLL

Prescriptive pragmas (C)
sequential_loop

Diagnostic Options

LIST
Specified as -qlist
Instructs the compiler to emit an object listing
The object listing includes hex and pseudo-assembly
representations of the generated code along with
traceback tables and text constants

REPORT (Fortran)
Specified as -qreport [=smplist]
Instructs the high level optimizer to emit a report including
pseudo-Fortran along with annotations describing what
transformations were performed (eg. loop unrolling,
automatic parallelization)
Also includes information about data dependences and
other inhibitors to optimization

Inside an Link-time Compilation

Whole
Program

Optimizer

Other Link
Information

Code
Generator

Wcode partitions

Object Files

Linker

Object files Libraries

Executable or shared library

All information subject to change without notice

Backup

Floating Point Options

FLOAT
Precise control over the handling of floating point
calculations
Specified as -qfloat=subopt where subopt is one of:

[no]fold: enable compile time evaluation of floating
point calculations - may want to disable for handling of
certain exceptions (eg. overflow, imprecise)
[no]maf: enable generation of multiple-add type
instructions - may want to disable for exact
compatibility with other machines but this will come at
a high price in performance
[no]rrm: specifies that rounding mode may not be
round-to-nearest (default is norrm)

Floating Point Options (continued)

FLOAT (continued)
[no]hsflt: allow various fast floating point optimizations
including replacement of division by multiplication by a
reciprocal
[no]rsqrt: allow computation of a divide by square root
to be replaced by a multiply of the reciprocal square
root

FLTTRAP
Enables software-only checking of IEEE floating point
exceptions
Usually more efficient than hardware checking since
checks can be executed less frequently
Specified as -qflttrap=imprecise | enable |
ieee_exceptions

Assertive Directives (Fortran)

ASSERT (ITERCNT(n) | [NO]DEPS)
Same as options of the same name but applicable to a
single loop - much more useful

INDEPENDENT: Asserts that the following loop has no loop
carried dependences - enables locality and parallel
transformations
CNCALL: Asserts that the calls in the following loop do not
cause loop carried dependences
PERMUTATION (names)

Asserts that elements of the named arrays take on distinct
values on each iteration of the following loop - may be
useful in sparse codes

Assertive Pragmas (C)

isolated_call (function_list) asserts that calls to the named
functions do not have side effects
disjoint (variable_list) asserts that none of the named
variables share overlapping areas of storage
independent_loop is equivalent to INDEPENDENT
independent_calls is equivalent to CNCALL
permutation is equivalent to PERMUTATION
iterations is equivalent to ASSERT(ITERCNT)
execution_frequency (very_low) asserts that the control path
containing the pragma will be infrequently executed
leaves (function_list) asserts that calls to the named
functions will not return (eg. exit)

Prescriptive Directives (Fortran)

PREFETCH
PREFETCH_BY_LOAD (variable_list): issue dummy
loads to cause the given variables to be prefetched into
cache - useful on Power machines or to activate Power 3
hardware prefetch
PREFETCH_FOR_LOAD (variable_list): issue a dcbt
instruction for each of the given variables.
PREFETCH_FOR_STORE (variable_list): issue a dcbtst
instruction for each of the given variables.

UNROLL
Specified as [NO]UNROLL [(n)]
Used to activate/deactivate compiler unrolling for the
following loop.
Can be used to give a specific unroll factor.

Prescriptive Pragmas (C)

sequential_loop directs the compiler to execute the
following loop in a single thread, even if the
-qsmp=auto option is specified

Optimization Options (continued)

COMPACT: specified as -q[no]compact
Prefers final code size reduction over execution
time performance when a choice is necessary

INLINE: specified as -Q[+names | -names | !]
Controls inlining of named functions - usable at
compile time and/or link time

UNROLL: specified as -q[no]unroll
Independently controls loop unrolling (implicitly
activated when -qoptimize=3

Optimization Options (continued)

INLGLUE - Specified as -q[no]inlglue
Inline calls to "glue" code used in calls through function
pointers (including virtual) and calls to functions which are
dynamically bound

TBTABLE
Controls the generation of traceback table information:
-qtbtable=none inhibits generation of tables - no stack
unwinding is possible
-qtbtable=small generates tables which allow stack
unwinding but omit name and parameter information -
useful for optimized C++
-qtbtable=full generates full tables including name and
parameter information - useful for debugging

Program Behaviour Options
(continued)

ASSERT (Fortran, C)
Specified as -qassert=[no]deps | itercnt= n
deps (default) indicates that some loop has a loop carried
memory dependence - try -qassert=nodeps for improved
performance
itercnt modifies the default assumptions about the expected
iteration count of loops (normally 10)

INTSIZE (Fortran): Define the default size of INTEGER variables
Specified as -qintsize=1|2|4|8
When using -q64, try -qintsize=8 for improved performance

IGNERRNO (C,C++) - Specified as -q[no]ignerrno
Indicates that the value of errno is not needed by the program

Program Behaviour Options
(continued)

DATA/PROC LOCAL/IMPORTED - Specifies expected
access to external variables and functions:

-qdatalocal[=vars]: Specifies that the definitions of all or
just the named variables will be statically bound - access
to statically bound variables is faster
-qdataimported[=vars]: Specifies that the definitions of all
or just the named variables might be dynamically bound
-qproclocal[=funcs]: Specifies that the definitions of all or
just the named functions will be statically bound - calls to
statically bound functions are faster than dynamic or
unknown
-qprocimported[=funcs]: Specifies that the definitions of
all or just the named functions will be dynamically bound
-qprocunknown[=funcs]: Specifies that the definitions of
all or just the named functions have unknown linkage

Program Behaviour Options
(continued)

LIBANSI (C, C++) - Specified as -q[no]libansi
Specifies that calls to ANSI standard functions will be
bound with conforming implementations

MA (C, C++) - Specified as -qma
Directs the compiler to generate inline code for calls to the
alloca function

PROTO (C) - Specified as -q[no]proto
Asserts that procedure call points agree with their
declarations even if the procedure has not been
prototyped

RO,ROCONST (C,C++) - Specified as -q[no]ro{const}
Directs the compiler to place string literals (RO) or
constant values (ROCONST) in read-only storage

